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SUMMARY

This study deals with the Reynolds-averaged Navier–Stokes simulation of evaporation in a turbulent gas–
liquid flow in a three-dimensional duct, focussing on the results obtained by a four-equation turbulence
model within the framework of the Euler/Euler approach for multiphase flow calculations: in addition to the
two-equation k−ε model describing the turbulence of the continuous (C) phase, the computational model
employs transport equations for the turbulence kinetic energy of the disperse (D) phase and for the velocity
covariance q=〈{uD

i }D{uCi }C 〉D . In the present study, the evaporation model according to Abramzon and
Sirignano (Int. J. Heat Mass Transfer 1989; 32:1605–1618) has been extended by introducing an additional
transport equation for a newly defined quantity a, defined as the phase-interface surface fraction. This
allows the change in the drop diameter to be quantified in terms of a probability density function. The
source term in the equation describing the dynamics of the volumetric fraction of the dispersed phase �D

is related to the evaporation time scale ��. The performance of the new model is evaluated by performing
a comparative analysis of the results obtained by simulating a polydispersed spray in a three-dimensional
duct configuration with the results of the Euler/Lagrange calculations performed in parallel. Prior to
these calculations, some selected (solid) particle-laden flow configurations were computationally examined
with respect to the validation of the background, four-equation, eddy-viscosity-based turbulence model.
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1. INTRODUCTION

Multiphase flows encountered in energy and process engineering are often characterized by a phase
interchange due to dispersed phase evaporation. When simulating the motion of liquid drops in a dry
gas, it is important to capture not only the evaporation but also the interaction between the discrete
and continuous phases. For instance, strong evaporation rates at the interfacial surface and the
relative humidity influence the shear stress dynamics at the interface and the overall droplet drag in
the air flow. Typical applications include direct injection of a diesel spray (break-up, evaporation and
combustion are occurring sequentially), spray drying in the foodstuff or pharmaceutical industries
or spray painting. These are only a few illustrative examples for industrial research areas, which
use powerful optimization tools for the prediction of multiphase transport processes. The capability
of a computational scheme to account for all important phenomena featuring these processes
is a major prerequisite for successful design and optimization of many industrial, multiphase
systems.

Commonly used computational schemes describing the interaction between the continuous
carrier phase and a particulate phase in such multiphase processes are the Euler/Lagrange and
the Euler/Euler approaches. The most widely used approach in technical applications is the
Euler/Lagrange method, which solves the governing equations only for the carrier phase. In this
concept, the associated dispersed (here liquid) phase is accounted for by solving the equations of
motion of single droplets (i.e. droplet parcels) and their positions (droplet trajectories) within the
continuous phase flow field (Lagrangian algorithm). The coupling between phases is accomplished
through the source terms in the equations governing the carrier phase, which account for the mass,
momentum and heat exchange. An important advantage of this approach is its numerical stability
and robustness. One disadvantage of the Euler/Lagrange approach is the high computational load,
since individual particle tracking necessitates a time-resolved solution procedure. In an alterna-
tive approach, known as the Euler/Euler approach, the motion of both phases, regarded as two
inter-penetrating continua, are described by a particular set of transport equations that governs
both phases. Conceptually, this approach is more straightforward than the Euler/Lagrange method,
making it attractive for industrial applications. New variables �C and �D , called the volume frac-
tions of the continuous (C) and the dispersed phase (D), are introduced in this method. The sum
of the volume fraction of all participating phases is equal:

∑
k �k =1 (k=C,D). The convective

terms and volumetric fraction–velocity correlations �kuki =�k〈uki 〉k are described with the help
of a volumetric-fraction-weighted averaging operator 〈.〉k , see e.g. Politis [1]. The Euler/Euler
approach is numerically more demanding, mainly due to fact that higher-order convective schemes
must be employed in order to solve correctly the corresponding continuity equation exhibiting
hyperbolic-type behavior due to lack of any diffusion-like term. Recently, Oliveira and Issa [2]
addressed some numerical difficulties associated with the solution algorithm used in the frame-
work of the Eulerian approach, pertinent mostly to the possible vanishing tendency of the volume
fractions � in different situations (e.g. phase segregation, recirculating flows) and proposed useful
remedies.

A large number of statistical turbulence models for single-phase flows defining the Reynolds
stress tensor, whose gradients originate from the (convective) turbulent transport of momentum,
have been developed in the past. The most widely used are those based on Boussinesq’s analogy
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employing eddy viscosity as the model parameter,‡ whose formulation was provided in the frame-
work of the standard k−ε modelling concept [7]. In that case, dynamic equations for the turbulent
kinetic energy k and its viscous dissipation rate ε are employed. The analog equation set for
continuous phase in a two-phase flow differs through several additional production and destruction
(sink) terms arising from the drag interaction process. The eddy viscosity model group generally
‘transforms’ the Reynolds stress gradient into a diffusion-like transport term. Such a diffusion term
does not result from the interaction between turbulent eddies in the two-phase flows; here, turbu-
lent transport has a somewhat different nature due to non-viscous character of the particles. The
turbulent motion of particles is represented by mixing of particle clouds. The turbulence quantities
characterizing the dispersed phase are most often obtained either from the one-equation model
scheme (transport equation for kD and an algebraic relationship for the corresponding dissipation
rate) or from appropriate algebraic formulations. In the present study, a different procedure was
adopted, in line with the model proposed by He and Simonin [8]. Besides transport equations for
the turbulent kinetic energy of the dispersed phase kD , the model employs a transport equation for
the velocity covariance q=〈{uD

i }D{uCi }C 〉D , being another variable representing a sink of turbu-
lence, instead of dissipation rate, whose existence as a viscous-dependent variable is not always
possible, as e.g. in the case of solid particles, due to their non-viscous character.

General studies according to Clift et al. [9] and Crowe et al. [10] introduce a couple of partial
models describing effects dominating the droplet-laden gaseous flows. Additional terms describing
momentum and turbulence sources are introduced with respect to modelling the diffusion (e.g.
Crowe et al. [11]) and dissipation rate. The drag force is formulated in terms of the characteristic
drag relaxation time scale �kp, which depends on the Reynolds number based on the difference
of particle and carrier phase velocities [12]. The interactions between the dispersed particle phase
and the continuous carrier phase [13] itself and the particle/wall and inter-particle collisions are
approximated by models based on the eddy diffusivity approach for the particle velocity fluctuations
[14, 15]. The modification of Grad’s theory according to Jenkins and Richman [16] is based on the
definition of a constant elasticity coefficient ec, which describes the influence of particle elasticity
on turbulent particle momentum diffusion and turbulence dissipation. The local diffusion induced
by crossing trajectory effects depending on local particle flux, which is not resolved by particle
mean velocity, was modelled by Csanady [17]. A very comprehensive overview of the multiphase
flow modelling methods including also direct numerical simulation and probability density function
(PDF) models and a number of computational examples is given in the study of Loth et al. [18].

The models of the turbulent diffusion and dissipation derived for solid particle motion can be
adopted for predicting a liquid polydispersed phase in a humid carrier gas phase. The computational
description of the evaporation process requests the calculation of the heat and mass transfer
exchange rate over the liquid/gas interface. The parameter influencing mostly these exchange
rates is the relative humidity of the gas phase. The highest gradient of relative humidity occurs
at the temperature levels slightly below the boiling point. Because of that, these temperatures

‡The models based on solution of the transport equations for each component of the Reynolds stress tensor
ui u j—differential second-moment closures (SMC)—are much rarely applied in conjunction with two-phase flow
calculations. We mentioned here only some relevant publications: Lopez de Bertodano et al. [3], Lance et al. [4],
Chen and Pereira [5] and Vit et al. [6].
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have to be accounted for when computing the dispersed phase evaporation driven by temperature
increase. The dimensionless numbers characterizing the heat and mass exchange process are the
Nusselt number Nu and the Sherwood number Sh. Several models, e.g. [19, 20], based on the
correlation model of Ranz and Marschall [21], have been developed to model these parameters.
The evaporation rate model of Abramzon and Sirignano [22] considers additionally the latent heat
flux of the evaporated liquid leaving the droplet. The correct capturing of the gas-phase humidity
requires the liquid vapor mass ratio Y , influenced by convective, conductive, turbulent and thermal
diffusive effects, to be computed from an appropriate transport equation in addition to the equation
governing the temperature field T . Additionally, evaporation and thermal diffusion are prescribed
by the drop number density or the phase interface area. The latter variable is defined by number
density of the dispersed phase and its mean drop surface. In order to calculate this area per volume,
the PDF of the drop diameter of the polydispersed phase has to be specified. Based on the d2-law,
which means that the drop surface of a spherical drop decreases linearly during the evaporation
process, and the drop diameter PDF, the heat and mass transfers of the evaporating polydispersed
liquid phase can be simulated.

The following studies dealing with the numerical calculation of flow configurations accounting
for the evaporation process are to be mentioned. Sommerfeld et al. [23] performed complementary
experimental and numerical investigations of a spray evaporating in a heated air flow. In this study
a short overview of the most widely used evaporation models was also given. The calculations
were conducted applying the k−ε model for the gaseous phase. The interaction with the droplet
phase was accounted for in the framework of the Lagrangian approach. The evaporation model
of Abramson and Sirignano assuming the infinite droplet conductivity was applied to account for
the rapid evaporation due to blowing effects. Chen and Pereira [5] have simulated the evaporation
in a turbulent spray flow. The computational method used was based on a full Reynolds stress
model. The turbulent diffusion modelling of the spray phase relied on the eddy dissipation ansatz
with respect to the continuous carrier phase. The evaporation algorithm accounted for the unsteady
simulation of the droplet transport. Two model formulations were compared, one based on the
standard Sherwood number and the other based on the modified Sherwood number as proposed by
Abramzon and Sirignano [22]. Aggarwal and Park [24] described computationally the increase in
the humidity in a laminar swirling jet flow. The diameter decrease is modelled by a time-dependent
algorithm, which makes an unsteady simulation necessary. Klingsporn and Renz [25] compared
the results of their calculations utilizing the jet length model of Abramzon and Sirignano [22]
with experimental data taken from a high pressure rig. Gosman and Clerides [26] scrutinized
the performance of different evaporation models describing the evaporation rate by modelling the
Sherwood and Nusselt numbers appropriately. Hereby, mutual comparison of the model results
focussing on the influence of the interphase heat transfer on the evaporation rate itself was provided.
Very recently, Kolaitis and Founti [27] performed a comparative assessment of a number of droplet
evaporation models regarding their physical accuracy and numerical robustness and efficiency,
and the latter with respect to the model performance when implemented in a computational fluid
dynamics (CFD) code. The computational examples serving for this analysis ranged from a single
droplet evaporating in a constant temperature and constant velocity air flow to a multiphase flow
system in a suddenly expanded pipe configuration consisting of a liquid spray issuing downward
from a hollow cone nozzle surrounded by a co-flowing turbulent air stream. The latter experimental
investigations were conducted by Sommerfeld and Qiu [28].

In the present study, the evaporation model according to Abramzon and Sirignano [22] is
extended to account for the dynamics of a newly defined variable, called the phase-interface surface
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fraction. Herewith, the quantification of the droplet diameter in terms of a PDF is enabled. This new
model scheme is validated by performing the Reynolds-averaged Navier–Stokes (RANS) calcula-
tion of a spray evaporating in a three-dimensional duct flow. Hereby, the focus is on the comparative
analysis of the results obtained by Euler/Euler and Euler/Lagrange computational strategies. Prior
to these calculations, the background, four-equation, eddy viscosity turbulence model was validated
through computations of the particle-laden, fully developed channel flow (e.g. Kulick et al. [29])
and the flow over a backward-facing step (e.g. Fessler and Eaton [30]). In addition, the results
obtained were also compared with the results of the complementary Euler/Lagrange computations
according to Kohnen [31].

2. COMPUTATIONAL MODEL

This section outlines the background computational model used in the present study. The Favré-
averaged form of the Reynolds-averaged equations describing the transport of mass, momentum,
heat, species and turbulent quantities of a continuous and a disperse phase interacting with each
other in the two-fluids, Euler/Euler framework are presented. Instead of using density, all equations
are weighted by the volumetric fraction �k (superscript k stands for C—continuous phase and
D—discrete phase; C=D, D=C , �C +�D =1; note that the overbar denotes ‘complement’ in
these expressions, unlike an ‘average’ elsewhere).

The volume fraction averaging procedure applied on an arbitrary variable �(= �̄+�′) is defined
as follows, with {�}k representing its fluctuation about the averaged value 〈�〉k (see e.g. Politis [1]):

〈�〉k = �k�

�̄k
, {�}k =�−〈�〉k (1)

�̄k〈�〉k =�k�=�k(�̄+�′)= �̄k�̄+�k�′ (2)

The rationale of this kind of averaging will be further outlined by presenting the mass balance in
a two-phase flow.

2.1. Mass balance

The continuity equation corresponding to the instantaneous flow field reads

�
�t

(�k�k)+ �
�xi

(�k�kuki )=�k with k∈{C,D} (3)

The source term �k in Equation (3), representing actually the mass transfer rate, originates from
the phase exchange due to evaporation process and represents certainly one of the most important
parts of the computational model. The sum of the specific mass source terms �D and �C of
dispersed and continuous phase has to take zero value: �C +�D =0.

The volumetric fraction–velocity correlation �kuki = �̄k〈uki 〉 arises after applying the volume
fraction averaging procedure on the convective term in Equation (3). The resulting equation takes
the following form:

�t (�k �̄k)+� j (�
k �̄k〈ukj 〉k)=�

k
where �

C +�
D =0 (4)
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2.1.1. Difference between the Reynolds and volume-weighted averaging filters. The following
expression results when applying the rule given by Equation (2) on the velocity field:

�k
i =〈uki 〉k− ūki = �kuk′i

�̄k
(5)

Deutsch and Simonin [32] modelled the correlation of volumetric fraction and velocity fluctuation
appearing on the right-hand side of Equation (5) by applying a simple gradient diffusion hypothesis

�kuk′i =−��� j �̄k , with �� representing an isotropic diffusion coefficient. Substituting this diffusion
model into the mass balance equation (4) the following form of the equation governing the
volumetric fraction of dispersed and continuous phase is obtained:

�
�t

(�k �̄k)+ �
�xi

(�k �̄k ūki )= �̄
k+ �

�xi

(
�k��

��̄k

�xi

)
(6)

The diffusion coefficient �� is defined via mass diffusion time scale �� and velocity covariance
q=〈{uCi }C {uD

i }D〉D , the latter representing the trace of the velocity vector correlation tensor of
both phases:

�� = 1
3��q (7)

with �� proposed by Csanady [17]:

�� =�Ct

√
1+C��

2
r with C� =0.45, �r =

√
(〈uD〉D−〈uC 〉C )2

2
3k

D
(8)

depending on the turbulent kinetic energy of the dispersed phase and the turbulent time scale of
the continuous phase

kD = 1

2
〈{uD

i }D{uD
i }D〉D, �Ct = 3

2
C	

kC

εCM

with C� =0.09 (9)

Herewith, the equation governing the mass balance in a two-phase flow, featuring the dependency
of the volumetric fractions on velocity and turbulence intensity of dispersed and continuous phase,
is closed, if the turbulent quantities of both phases are known.

2.2. Attaching forces

The particle number density n representing the number of particles per volume

n= lim
V→V0

NV

V
(10)

is defined by the volumetric fraction �D and the expectation of the particle diameter cube assuming
a spherical particle:

�D =n E(Vp)=n

E(D3

p)

6
⇒ n= �D

Vp
= 6�D


E(D3
p)

(11)
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Accordingly, the gravity and lift forces can be defined as follows:

FG ·n=�D E(Vp)ng=�D�Dg, FL ·n=−�D∇ p (12)

The drag force on a spherical particle depending on the relative particle Reynolds number

FD =3
	CUrel
E(D3

p)

E(D2
p)

(1+0,15Re0,687rel ) (13)

Rerel= �C E(Dp)|〈uC 〉C −〈uD〉D|
	C

(14)

has to be multiplied with the particle number to formulate the volume-specific drag force of the
dispersed phase:

�D fi =FDi ·n= �D�D

�p
(uCi −uD

i ) (15)

�p= �DE(D2)

18	C
(1+0.15 Re0.687rel )−1 (16)

The drag relaxation time scale �p depends on the expectation value of the squared diameter and
the relative Reynolds number [10].

Although the Reynolds averaging of the lift and gravity forces produces no additional terms,
the averaging of the drag force results in an additional term depending on filter difference �C

i (see
Equation (5)):

�D �̄D

�p
(〈uCi 〉D−〈uD

i 〉D)= �D �̄D

�p

(
〈uCi 〉C −〈uD

i 〉D− �C
i

�̄D

)
(17)

The latter term arises from the inequality of both the volume-weighted filters:

〈�〉D−〈�〉C = �̄C�D′�′+ �̄D�D′�′

�̄C �̄D
= �D′�′

�̄C �̄D
(18)

The transport of momentum of both phases has to account for the corresponding filters. As analyzed
in the study of Oliveira [33], this additional source term represents an expected outcome of the
modelling approach of the momentum equations governing both 〈uCi 〉C and 〈uD

i 〉D .

2.3. Momentum transport

In the present study, the Reynolds stress tensor, that is the fluctuating velocity correlation in the
momentum equation, is modelled by using the Boussinesq formulation within the eddy viscosity
modelling concept:

−〈{uki }k{ukj }k〉k =�kt (� j 〈uki 〉k+�i 〈ukj 〉k− 2
3 �l〈ukl 〉k�i j )− 2

3k
k�i j (19)
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The turbulent viscosity of the continuous phase �Ct is approximated in line with the k–ε model of
Jones and Launder [7] as follows:

�Ct =C	
(kC )2

εCM

, kC = 1

2
〈{uCi }C {uCi }C 〉C (20)

Although the turbulent viscosity of the continuous phase is defined by turbulent time scales (kC/εCM)
only, the diffusion coefficient of the dispersed phase �Dt is function of the mass diffusion ��, the
drag relaxation time scale �p and the particle collision time scale �c,

�Dt = ��+ 1
3�pk

D

1+0.4�p/�c
, kD = 1

2
〈{uD

i }D{uD
i }D〉D (21)

the latter depending on the collision rate Ṅ (≡nAnvn , An =
D2
p):

�c= 1

Ṅ
=(n
D2

pvn)
−1 (22)

Furthermore, the collision velocity vn is formulated in line with the proposal of He and Simonin [8]:

vn =
√
16




2

3
kD = 4


1/2
uD
rms≈2.2568uD

rms (23)

Substituting the expressions for collision velocity vn and particle number n (Equation (11)) into
Equation (22) the collision time scale, representing the number of collisions of a single particle
per time, can be finally formulated as follows:

�−1
c =6�̄D

E(D2
p)

E(D3
p)

√
16




2

3
kD (24)

The ratio of the expected values of the particle diameter cube to the particle diameter square in
Equation (24) represents the Sauter mean diameter D32.

The final form of the equation governing the momentum of both the dispersed and the continuous
phase reads

�t (�k �̄k〈uki 〉k)+� j (�
k �̄k〈uki 〉k〈ukj 〉k)

=�k �̄kgi − �̄k�i 〈p〉k +� j ((	
k+	kt )�̄

k (� j 〈uki 〉k+�i 〈ukj 〉k− 2
3�l〈ukl 〉k�i j ))

−�i

(
�k �̄k 2

3
kk
)

+ �D �̄D

�p
(〈uk̄i 〉k̄−〈uki 〉k)+

�D

�p
�C
i ·sign(k) (25)

where

sign(C)=1, sign(D)=−1, sign(k̄)=−sign(k) (26)

The turbulence model equations governing the quantities kD , q as well as kC and εCM are given in
Section 2.8.
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2.4. Evaporation-dependent diameter PDF

In an evaporating process, the mass transfer rate on the drop surface depends on the drop size. The
polydispersed spray consists of drops with different diameters. To determine the mass transfer, i.e.
the evaporation rate for such a case, the drop diameter distribution of the spray is necessary. Using
the approach based on a particle diameter PDF (see Figure 1 for its graphical representation)

f

(
Dp

E(Dp)

)
= 


2

Dp

E(Dp)
e−(
/4)D2

p/E(Dp)
2

with f (Dp)= 9

8
�
Dp

D2
32

e−(9/16)�D2
p/D

2
32 (27)

depending on the Sauter mean diameter,

D32= E(D3
p)

E(D2
p)

= 6�̄D

ā
(28)

with the newly defined variable ā being the phase-interface surface fraction; the mass transfer rate
can be calculated [34]. The expectation values of the squared and cubic diameters only in terms
of the Sauter mean diameter result from this modelled PDF:

E(Dp)= 2

3
D32, E(D2

p)=
16

9

D2
32, E(D3

p)=
16

9

D3
32 (29)

A time-dependent relation has to be defined to calculate the change of the drop diameter when
simulating motion of a polydispersed phase. The change of the expectation value of the diameter
squared is presumed to be constant in accordance with the d2-law [35]:

d

dt
E(D2

p)=−� (30)

Integration of this equation results in the time-dependent solution for the drop diameter:

Dp(t)=
√
D2
p(0)−�t (31)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

f(
D

p)

Dp/D32

diameter pdf

Figure 1. PDF of a normalized particle drop diameter in a polydispersed spray.
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Substitution of the expectation value with the given density function definition

−�= d

dt
E(D2

p)=
16

9


d

dt
D2
32= 32

9

Ḋ32

d

dt
D32⇒ Ḋ32=−9


32

�

D32
(32)

reveals that the deviation of the Sauter mean diameter depends on the evaporation constant of the
d2-law. Based on this formulation, the following equation has been derived:

d

dt
E(D3

p)=
16

9


d

dt
D3
32= 16

9


(
Ḋ32D

2
32+D32

d

dt
D2
32

)
=−3

2
�D32 (33)

With this expression, the time-dependent change of an expected drop volume is defined. The
outcome of the last equation is used for the determination of the mass transfer of a drop with the
expected mass m̄p:

dm̄p

dt
= 


6
�D d

dt
E(D3

p)=−


4
�DD32� (34)

Based on the evaporation model according to Abramzon and Sirignano [22], the mass transfer rate
at the surface of a drop cloud representing a function of the modified Sherwood number Sh∗ and
the mass transfer coefficient BM is to be determined by using the following equation:

ṁ=
D21�
C D��Sh

∗ ln(1+BM) (35)

The definitions of the Sherwood number and its modification and the mass transfer coefficient are
given in Section 3. By equalizing the PDF-dependent mass transfer rate and the modelled mass
transfer rate, the evaporation constant in the model of Abramzon and Sirignano [22] is defined as




4
�DD32�=−ṁp= ṁ=
D21�

C D��Sh
∗ ln(1+BM)

⇒�=4
D21

D32

�C

�D
D��Sh

∗ ln(1+BM) (36)

In accordance with the d2-law, the evaporation constant should be independent of the particle
diameters. This fact brings an additional constraint to the expectation values of the probability
function: D21/D32=const. The given PDF fulfills this condition as follows:

D21

D32
= E(D2)E(D2)

E(D)E(D3)
= 8

3

(37)

With the proposal of Abramzon and Sirignano, the time-dependent modelling of the drop diameter
probability function is closed.

2.5. Evaporation progress

The model developed serves for calculation of the evaporation rate of spherical water drops. Water
is a liquid dispersed phase that satisfies the d2-law. Keeping in mind the definition of the life time
of a drop T and its diameter loss rate, it is known that each drop with a diameter

Dp<(�T )1/2 (38)
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is evaporated completely. To determine the number of evaporated drops in a cloud, the PDF has
to be integrated in the following manner:∫ (�T )1/2

0
f (Dp)dDp (39)

Consequently, the time change of the particle number is obtained as follows:

dn̄

dt
= − lim

T→0

[
n̄

T

∫ (�T )1/2

0
f (Dp)dDp

]
= lim

T→0

[
n̄

T
(e−(9
/16)�T /D2

32 −1)

]
(40)

= lim
T→0

[
n̄

T
(emT −1)

]
, m=−9


16

�

D2
32

= lim
T→0

[
n̄

T
((1+mT )1/mT ·mT −1)

]
= lim

T→0

[
n̄

T
mT

]
= n̄m=−9


16

�

D2
32

n̄ (41)

The time change in the volumetric fraction �̄D (see Equation (11)) is calculated by using the results
represented by Equations (33) and (41):

d�̄D

dt
= 


6
E(D3

p)
d

dt
n̄+ n̄




6

d

dt
E(D3

p)

= −


6

16

9

D3
32 · 9


16

�

D2
32

n̄− n̄



6
· 3
2
�D32=−45

32



��̄D

D2
32

(42)

The time change of the Sauter mean diameter (Equation (28)) consists of the deviations of the
volumetric fraction and the surface fraction:

Ḋ32= 6

ā2

(
ā
d�̄D

dt
− �̄D

dā

dt

)
=D32

(
1

�̄D
d�̄D

dt
− 1

ā

dā

dt

)
(43)

Utilizing the results following from Equations (32) and (42), the change in the surface fraction
can also be formulated in terms of the evaporation constant and the Sauter mean diameter:

1

ā

dā

dt
= 1

�̄D
d�̄D

dt
− 1

D32

dD32

dt
=−9


8

�

D2
32

⇒ dā

dt
=−9


8

�

D2
32

ā (44)

The source terms of the �-equation (Equation (42)) and the a-equation (Equation (44)) stay in the
following relationship:

1

�̄D
d�̄D

dt
= 5

4
· 1
ā

dā

dt
(45)

Obviously, the source terms in both transport equations can be formulated in terms of the same
parameter: �� (Equation (48)). With the definition of the particle diameter PDF as the starting
point, the evaporation process is finally modelled by the following two transport equations:

�t (�D �̄D)+� j (�
D �̄D〈uD

j 〉D)=− 5
4�

D�−1
� �̄D (46)

�t (�Dā)+� j (�
Dā〈uD

j 〉D)=−�D�−1
� ā (47)
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The convective transport in both equations is defined by the volume-fraction-weighted averaged
particle velocity 〈uD

i 〉D [33]. The first equation (Equation (46)) originates from the well-known
mass balance of the dispersed phase with a mass transfer defining source term. The second equation
(Equation (47)) governs the surface fraction of the dispersed phase, being the synonym for the cloud
surface per volume. The evaporation time scale ��, the source terms of this evaporation-describing
two-equation model depend upon, reads

�� =−ā

(
dā

dt

)−1

= 8

9


D2
32

�
(48)

Accordingly, the transport of both quantities �D and a depends on the evaporation constant �,
which is given by the d2-law. Introducing the definition of the evaporation constant, the final
expression serving for the determination of the evaporation time scale is given by

�� = D2
32

12

�D

�C
[D��Sh

∗ ln(1+BM)]−1 (49)

By solving the equations of the �–a-model the evaporation rate of a spray stream can be quantified.
In such a manner, the mass balance of a two-phase flow is completely satisfied.

2.6. Vapor transfer

The gaseous phase was considered as a two-component mixture consisted of dry air and vapor.
The equation governing the vapor mass ratio Y (=�vapor/�C ) of a humid gas reads

�t (�CY )+� j (�
CYuCj )=� j (�

C D��� j Y ) (50)

with the binary diffusion coefficient D�� taking the following form [36]:

D�� = (1013×105 Pa/p)T 7/4×10−3/2((Mair+Mvapor)/Mair ·Mvapor)1/2

[(∑� vair� )1/3+(
∑

� v
vapor
� )1/3]2

×10−12
(

kg

mol

)1/2

K−7/4m
2

s
(51)

∑
�

vair� =20,1,
∑
�

vwater� =12,7 (52)

The diffusion-like turbulent transport of the vapor mass ratio (originating from the averaging of
its convective transport) is modelled by utilizing the simple gradient diffusion hypothesis with the
coefficient being the function of the turbulent Schmidt number Sct :

〈uCj Y ′〉C =− �Ct
Sct

� j Ȳ , Sct =0,85 (53)

�t (�C �̄CȲ )+� j (�
C �̄C 〈uCj 〉CȲ )

=� j

[
�C �̄C

(
D��+ �Ct

Sct

)
� j Ȳ

]
+ 5

4

�D

��
�̄D (54)
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The mass transfer rate (Equation (49); see also Equation (46)) features the additional source term
in this transport equation. The density of the continuous phase, consisting of fluid vapor and air
(�C =�air+�vapor), is defined by the sum of their partial densities. The partial density of vapor
arises from the definition of the vapor mass ratio Y :

Y = �vapor

�air+�vapor
=
(

�air

�vapor
+1

)−1

⇒�C = �vapor

Y
= �air

1−Y
(55)

The partial density of air

�air= xair
Mair

R0TC
p (56)

follows from the definition of the partial density of vapor and the volumetric air fraction xair:

�air
Y

1−Y
=�vapor=(1−xair)

Mvapor

R0TC
p (57)

⇒ xair=
(
1+ Y

1−Y

Mair

Mvapor

)−1

(58)

By introducing the expression for the partial density of air (Equation (56)) into Equation (55), the
density of the continuous phase is formulated as follows:

�C =(1−Y )−1
(
1+ Y

1−Y

Mair

Mvapor

)−1
Mair

R0TC
(59)

With the last expression, the transport equation of the vapor mass ratio (Equation (54)) is closed.

2.7. Heat transfer

The heat transfer across the surface of an evaporating drop has to be solved simultaneously with the
mass exchange between the phases. The proper description of the thermodynamics of a two-phase
flow requests the molecular processes and the variable flow properties to be accounted for. The
mixing of vapor and air causes a substantial change of the Mol mass and specific heat of the
continuous phase as follows:

1

MC
= 1−Y

Mair
+ Y

Mvapor , cCp =(1−Y )cairp +Ycvaporp (60)

Based on the theory of the ideal gases with cid� =cCp −R0/MC , the conductivity of the continuous
phase is defined by the following model [36]:


C =	C
(
1,3cid� +1,762

R0

MC
−0,352

R0

MC

T air
crit

TC

)
(61)

T air
crit=133,2K, Mair≈0,029

kg

mol
(62)

The radiative heat flux per volume q̇ D
rad, absorbed by a particle, is defined in terms of its surface

area per volume a, the absorption coefficient of the dispersed phase �Dabs and the difference of the
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fourth powers of the absolute temperatures

q̇ D
rad=a�Dabs�[(TC )4−(T D)4], �Dabs=�waterabs =0,92 (63)

with the Stephan–Boltzmann constant �=5,67051×10−8W/(m2K). This term represents an addi-
tional source term in the equation of thermal transport. Owing to the equivalence of emission and
absorption coefficients, the radiative flux can take negative values, if the dispersed phase is on the
a higher temperature level compared with the continuous one.

As defined in the evaporation model of Abramzon and Sirignano [22], the heat transfer at the
surface of an evaporating drop depends on the latent heat L(T D), the temperature difference and
the mass transfer ṁ:

QL= ṁ

[
cDp (TC −T D)

BT
−L(T D)

]
(64)

The heat transfer coefficient BT is to be computed from the Abramson and Sirignano model
algorithm, see Section 3. By utilizing Equation (46), this heat source term can be expressed in
terms of �� in a volume-specific manner.

Using the following definition of the evaporation enthalpy [37],

�hv = R0

Mvapor

(
1

T D
− 1

Tref

)−1

ln
psat(Tref)

psat(T D)
(65)

the heat, which is used for the evaporation process, can be subtracted from the heat of the continuous
phase. The temperature Tref denoting the gas temperature near the drop surface is formulated by
the 1

3 -law [38]:
Tref=T D+Ar (T

C −T D) with Ar = 1
3 (66)

In analogy to the mass transfer, the turbulent diffusion of the heat of both phases is modelled by
simple gradient diffusion hypothesis in terms of turbulent Prandtl number Prkt .

〈uki T ′k〉k =− �kt
Prkt

�i T̄ k; PrCt =0,6; Pr Dt =1,0 (67)

The final two equations completing the Euler/Euler computational scheme are those governing
the thermal transport between the phases being represented by the particular set of temperature
equations. These equations originate from the enthalpy transport. Although the deviation of air
enthalpy dhC is proportional to its temperature, the deviation of water enthalpy dhD is proportional
to the temperature difference with reference to the melting point temperature T D

0 =273,15K. The
radiation emitted by the gas i.e. absorbed by liquid phase q̇rad, evaporation heat (represented by
the evaporation enthalpy �hv), latent heat L(T D), molecular and turbulent conduction as well as
the conduction at the boundaries between the phases are herewith accounted for:

�t (�C �̄C T̄ C )+� j (�
C �̄C 〈uCj 〉C T̄ C )

=� j

[
�̄C
(


C

cCp
+�C

�Ct
PrCt

)
� j T̄

C

]
− q̇rad

cCp
+5

4
�D �̄D

��

cDp
cCp

[
T̄ D− T̄ C

BT
+ L(T D)

cDp
−�hv

cDp

]
(68)
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�t [�D �̄D(T̄ D−T D
0 )]+� j [�D �̄D〈uD

j 〉D(T̄ D−T D
0 )]

=� j

(
�̄D�D �Dt

Pr Dt
� j T̄

D
)

+ q̇rad
cDp

− 5

4
�D �̄D

��

[
T̄ D− T̄ C

BT
+ L(T D)

cDp

]
(69)

2.8. Turbulence modelling

The background turbulence model for both phases is based on the Boussinesq analogy employing
eddy viscosity 	kt (Equation (19)) as the model quantity. The turbulence of the dispersed liquid phase
is characterized by its turbulence kinetic energy (Equation (9)) and the covariance of velocities of
the particulate liquid phase and carrier gas phase q=〈{uD

i }D{uCi }C 〉D in line with the proposal by
He and Simonin [8], for which the transport equations

�D �̄D�t kD+�D �̄D〈uD
j 〉D� j k

D

= �D �̄D

�p
(q−2kD)−�D �̄D〈{uD

i }D{uD
j }D〉D� j 〈uD

i 〉D

+� j (K
D
t �̄D� j k

D)−�D �̄D�Dc (70)

�D �̄D�t q+�D �̄D〈uD
j 〉D� j q

= �D �̄D

�p
(2ZkD+2kC −(1+Z)q)−�D �̄D〈{uD

i }D{uCj }C 〉D� j 〈uCi 〉C

−�C �̄C 〈{uCi }C {uD
j }D〉D� j 〈uD

i 〉D

+�
(

�D �̄D
��

�k
� j q

)
−�D �̄D

q

��
+ 5

4
�D �̄D

��
(kC +kD) (71)

with the mass loading Z =�D�D/(�C�C ), are to be solved. The diffusion coefficients �Dt and
K D
t are modified to account for the influence of drop collisions on the disperse phase turbulence,

Jenkins and Richman [16]:

�Dt =
(

��+ 1

3
�pk

D
)(

1+ 1

2
�p

�c
�c

)−1

with �c=(1+ec)(3−ec)/5 (72)

K D
t =

(
��

�k
+ 5

9
�p
2

3
kD
)(

1+ 5

9
�p

�c
�c

)−1

with �c=(1+ec)(49−33ec)/100 (73)

van =−ec ·vbn , �Dc = 1−e2c
�c

· 2
3
kD (74)

The collision-dependent dissipation rate �Dc , mimicking inelastic bouncing of the droplets, accounts
for reduction in the turbulence intensity of the disperse phase. The parameter ec is defined by
ratio of the normal rebound velocity van to the normal impact velocity vbn . In the case of inelastic
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particle bouncing (0�ec<1), the dissipation rate �Dc is positive, whereas it takes the value zero if
elastic bouncing (ec=1) occurs.

The turbulence of the continuous phase is modelled by an extended k−ε model, which consists
of the transport equations of the turbulent kinetic energy

�C �̄C�t kC +�C �̄C 〈uCj 〉C� j k
C

=�D �̄D
(
1

�p
+ 5

4

1

��

)
(q−2kC )−�C �̄C 〈{uCi }C {uCj }C 〉C� j 〈uCi 〉C

+� j

[(
	C + 	Ct

�k

)
�̄C� j k

C
]
−�C �̄CεCM (75)

and its dissipation rate

�C �̄C�tεCM+�C �̄C 〈uCj 〉C� jε
C
M

=�D �̄D
(
5

4

1

��
+Cε3

�p

)
εCM

( q

kC
−2
)
−Cε1�

C �̄C
εCM

kC
〈{uCi }C {uCj }C 〉C� j 〈uCi 〉C

+� j

[(
	C + 	Ct

�ε

)
�̄C� jε

C
M

]
−Cε2�

C �̄C
εC2
M

kC
(76)

with the constants Cε1=1,44, Cε2=1,92 and Cε3=1,2 and the Prandtl–Schmidt numbers �k =1.0
and �ε =1.3. Note the dependency on the evaporation time scale �� (Equation (49)) in the source
terms of the last three transport equations. The additional source terms in the equations of the
continuous phase show that evaporation rate written in terms of the evaporation time scale ��
exhibits similar effects on the turbulence as the drag forces, modelled in terms of the relaxation
time scale �p. It should be noted here that due to the evaporation of the dispersed phase (the mass
transport is present only in one direction: from disperse to the continuous phase) the influence of
the mass transfer rate is restricted to the volumetric fraction of the dispersed phase only and has
no influence on its turbulent kinetic energy (Equation (70)).

3. EVAPORATION MODELLING

The liquid mass leaving the droplet in the evaporation process influences strongly both the heat
and mass transfer between the phases. This process is accounted for by the Spalding heat and
mass transfer coefficients BT (Equation (64)) and BM (Equation (48)). This section outlines the
algorithm for their determination. As pointed out previously, the evaporation model proposed by
Abramzon and Sirignano [22] was adopted here as the background model. In the framework of
their model, the above-mentioned coefficients as well as the modified Nusselt Nu∗ and Sherwood
numbers Sh∗ are defined in terms of the relative humidity of the continuous phase.

3.1. Saturation pressure and relative humidity

During the evaporation process, the humidity in the air and the vapor mass ratio increase until the
partial pressure has reached the saturation pressure (Figure 2). Based on the following functional
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p s
at

 (
kP

a)

T ( oC)

psat

Figure 2. Temperature-dependent saturation pressure of water vapor.

dependency between the maximum vapor mass ratio Ysat, the absolute pressure p and the saturation
pressure psat [39]

Ysat=(1−Ysat)0,622
psat

p− psat
(77)

the maximum vapor mass ratio and the relative humidity can be determined:

⇒ Ysat= 0,622

p− psat/psat+0,622
= 0,622psat

p−0,378psat
(78)

The relative humidity 0���1 is defined by the ratio of the vapor mass ratio to its maximum:
�(=�vapor/�vaporsat )=Y/Ysat.

3.2. Heat-transfer-dependent mass transfer

The mass transfer per surface of a cloud of spherical particles

ṁ

AO
=�C D��BM

Sh

E(Dp)
with AO =
E(D2

p)

⇒ ṁ=�C
D21D��ShBM

(79)

depends on the Sherwood Number Sh and the mass transfer coefficient BM:

BM = Ysat−Y∞
1−Ysat

= Ysat
1−Ysat

− Y∞
1−Ysat

= 0,622psat−Y∞(p−0,378psat)

p− psat
(80)
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The heat flux

QL=Nu
D21

C (TC −T D)−ṁL(T D) (81)

depending on the Nusselt number Nu can also be defined in terms of the heat transfer coefficient
BT and the liquid temperature-dependent latent heat L(T D):

BT= cDp (TC −T D)

QL/ṁ+L(T D)
⇒QL= ṁ

(
cDp (TC −T D)

BT
−L(T D)

)
(82)

Utilizing the heat flux definition given by Equation (81), the mass transfer rate formulae can be
finally written as a function of the Nusselt number

ṁ=
D21

C

cDp
NuBT (83)

In such a manner, the mass transfer from the liquid to the gas phase can be determined. Here, the
Nusselt number is calculated using the algorithm outlined in the following subsection.

3.3. Evaporation algorithm

Starting from the initial values of Nusselt and Sherwood numbers

Nu0=1+(1+Rerel Pr)
1/3 · f (Rerel) (84)

Sh0=1+(1+Rerel Sc)
1/3 · f (Rerel) (85)

with

f (Rerel)=
∣∣∣∣∣

1, Rerel�1

Re0,077rel , else

∣∣∣∣∣ (86)

and

Pr = cCp 	C


C
, Sc= 	C

�C D��

(see Equation (14) for the definition of Rerel) the modifications according to Abramzon and
Sirignano [22] are defined in the following manner:

2+ Sh0−2

F(BM)
= Sh∗ = Sh

BM

ln(1+BM)
(87)

2+ Nu0−2

F(BT)
=Nu∗ =Nu

BT

ln(1+BT)
(88)

with

F(B)=(1+B)0,7
ln(1+B)

B
and Le= Sc

Pr
= 
C

�CcCp D��
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Introducing these modified Sherwood and Nusselt numbers into the mass transfer equations (79)
and (83)

ṁ=
D21

C

cDp
Nu∗ ln(1+BT) , ṁ=�D21�

C D	�Sh
∗ ln(1+BM) (89)

⇒ cCp
cDp


C

�CcCp D��︸ ︷︷ ︸
=Le

Nu∗ ln(1+BT)= Sh∗ ln(1+BM) (90)

the exponent �B featuring in the heat transfer coefficient equation

BT=(1+BM)�B −1

is solved by the following formulation arising from Equation (89)

�B = ln(1+BT)

ln(1+BM)
= cDp

cCp

Sh∗

Nu∗ Le
−1 (91)

Using this definition and the initial condition Nu∗(0) =Nu0, the following iterative algorithm is
used for the Nusselt number determination:

�(n)
B = cDp

cCp

Sh∗

Nu∗(n)
Le−1 (92)

B(n+1)
T =(1+BM)�

(n)
B −1, Nu∗(n+1) =2+ Nu0−2

F(B(n+1)
T )

(93)

The truncation condition is defined by the ratio of the heat transfer coefficients:∣∣∣∣∣ B
(n+1)
T

B(n)
T

−1

∣∣∣∣∣<�

Herewith, the computational scheme describing the processes of the heat and mass transfer in an
evaporating two-phase flow is completed.

4. NUMERICAL METHOD

The Euler/Euler computations were performed with an in-house computer code FAN3D based on a
finite volume numerical method for solving three-dimensional RANS equations on block-structured,
body-fitted, non-orthogonal meshes. Block interfaces are treated in a conservative manner, consis-
tent with the treatment of inner cell faces. Cell-centered (collocated) variable arrangement and
cartesian vector and tensor components are used. The equations are linearized and solved sequen-
tially using an iterative ILU method. The well-known SIMPLE algorithm, modified to account
for volumetric fraction, was applied for coupling the velocity and pressure fields in the transport
equation governing the momentum of the continuous phase enabling in such a manner fulfill-
ment of the continuity condition. Unfortunately, a similar algorithm does not exist for the discrete
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phase, leading eventually to convergence problems, particularly in regions where the fraction
of discrete particles is either zero or very close to zero (e.g. in the corner behind a backward-
facing step). The convective transport of the volumetric fraction of the disperse phase �D is
approximated by blending an upwind discretization scheme (UDS), modified to account properly
for the influence of the void fraction gradients on the weighted fluxes, and central differencing
(see [40] for further details), whose stability was enhanced through the so-called deferred correction
approach.

When using the standard UDS a simplified one-dimensional simulation of a flow from ‘west’
to ‘east’ would imply the transport equation for the volume fraction discretized by the following
system of algebraic equations (La=b):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

−a2 a2

−a3 a3

. . .
. . .

−an an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�D1

�D2

�D3
...

�Dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f c0 �D0 A0

0

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with ai = f ci−1Ai−1, i ∈{1, . . . ,n} (94)

where f c0 �D0 represents the mass flux of the dispersed phase over the grid-cell inlet surface A0.
Physically, if the particles would accelerate (e.g. due to gravity forces), the number density and
the volumetric fraction would decrease. However, by applying the standard upwind discretiza-
tion procedure the volumetric fraction �D would remain constant, independent of the velocity
field:

�D1 =�D0 (95)

�Di =�Di−1 for i ∈{2, . . . ,n} (96)

⇒�Di =�D0 for i ∈{1, . . . ,n} (97)

In order to fulfill the conservativeness, the difference between velocities on the ‘east’ and ‘west’
side of the computational cell has to be accounted for. Accordingly, the diagonal elements of the
coefficient matrix have to be appropriately modified to simulate the accelerating flow:

aP =max( f ce ;0)+max(− f cw;0) (98)

In addition to the matrix Li j used within the standard upwind discretization (Equation (94)), the
modified matrix (L+M)a=b contains an additional term:

Mi j = �i j (Aemax( f ce ;0)+Awmax(− f cw;0)

−Aemax(− f ce ;0)−Awmax( f cw;0))=�i j ( f
c
e Ae− f cwAw) (99)
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providing the conservativeness condition to be satisfied when computing the accelerating and
decelerating flows. The modified system of algebraic equations now takes the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

−a1 a2

−a2 a3

. . .
. . .

−an−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�D1

�D2

�D3
...

�Dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f c0 �D0 A0

0

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with ai = f ci Ai , i ∈{1, . . . ,n} (100)

By using this conservative CUDS, the mass conservation of the dispersed phase is ensured:
f ci �Di Ai = f ci−1�

D
i−1Ai−1; i ∈{1, . . . ,n}

The convective transport of the carrier phase variables was discretized by an appropriate blended,
central differencing scheme. Standard wall functions were applied for modelling the near-wall
regions.

4.1. Solution algorithm

Here, the solution algorithm concerning the order of solving of the underlying equations governing
the two-phase flow and associated heat and mass transfer is outlined below.

First, the momentum equation (25) governing both the continuous (C) and dispersed (D) phases is
to be solved. The corresponding turbulent diffusion coefficients �Ct and �Dt are defined in Equations
(20) and (72), respectively. The necessary kinetic energy of turbulence kC , its viscous dissipation
rate εC , kinetic energy of turbulence kD (the corresponding turbulent diffusion coefficient K D

t is
given in Equation (73)) and velocity covariance q are to be determined by solving Equations (75),
(76), (70) and (71), respectively. The requested relaxation time scale �p and collision time scale
�c are described by Equations (16) and (24). The mass conservation of the continuous phase is
described through the well-known pressure correction (pC ) procedure SIMPLE. The continuity of
the dispersed phase is described by the equation governing the volume fraction �D (Equation (46)).
Equation (47) defining the transport of the volume-specific phase interface a (surface fraction of
the dispersed phase) serves for the determination of the Sauter mean diameter D32 (Equation (28))
and appropriate statistical moments (Equation (29)).

The source terms in the continuity, momentum and energy (Equation (68)) equations, being
dependent on the mass transfer at the phase interface due to evaporation process, are formulated in
terms of the characteristic time scale �� (Equation (49)). The vapor mass ratio Y and its saturation-
pressure-dependent maximum value Ysat are defined in Equations (54) and (78), respectively. The
source terms of the transport equations for temperature of both phases (Equations (68) and (69))
are derived in terms of the continuous phase conductivity 
C (Equation (61)), the radiative heat flux
q̇rad (Equation (63)) and the evaporation enthalpy �hv (Equation (65)). The heat transfer coefficient
BT (Equation (93)) is to be determined by using the method of Abramson and Sirignano.
Herewith, a system of 12 strongly coupled, partial differential equations for uC , uD , pC , kC , εC ,

kD , q , TC , T D , Y , � and a describing the two-phase flow under the conditions of phase change
due to evaporation process is generated. The equations for TC , T D , Y and a are to be omitted
when simulating a non-evaporating two-phase flow (as e.g. in Section 5).
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5. COMPUTATIONAL METHOD VERIFICATION AND MODEL VALIDATION

A logical first step in the verification of the computational algorithm presented and the turbulence
model validation, before starting the computations of the evaporation process, is to calculate some
well-known isothermal, two-phase flow benchmarks for which not only a reference experiment but
also a numerical database exist, especially in the Euler–Lagrange framework, whose comparative
analysis represents finally the topic of the present study. For this purpose the following two
gas–solid flow configurations were chosen: fully developed channel flow (see Figure 3) (e.g.
Kulick et al. [29]) and flow over a backward-facing step (see Figure 6) representing actually a
sudden expansion of the former flow geometry (e.g. Fessler and Eaton [30]). These are the most
representative configurations, when dealing with wall-bounded and separated flows. It should be
stressed that the background four-equation model has never been tested before in these two cases. It
should also be noted that although the flows considered are nominally two-dimensional, the three-
dimensional computations accounting for a certain spanwise dimension (the periodic boundary
conditions were applied at the side planes) have been performed. For both flows a very extensive
and detailed database is available. The interaction between air, representing the continuous phase,
and copper, being taken for the monodispersed phase, was investigated in both flow cases. Gravity
acts in the positive x-axis direction. The channel flow Reynolds number, based on the channel
height (h=40mm) and single-phase centerline velocity (U0=10.5m/s), is Re=27600. The flow
is regarded as fully developed after 150 channel heights and at this position it is assumed that the
particle velocity and particle turbulence reached an asymptotic state. This fact provided a certain
insensibility to the initial conditions. The step height (H =2h/3=26.7mm) Reynolds number is
Re=18400. The expansion ratio, representing the ratio of the channel heights after and before
expansion, was ER=(h+H)/h=66.7/40=1.6675. This value indicates that a fairly intensive
perturbation was imposed on the equilibrium channel flow. The ratio of the channel spanwise
dimension to the channel height was 11.4, which was considered as sufficient to ensure the flow
two dimensionality. The copper particles have a density of �D =8800kg/m3 and a diameter of
Dp=70�m. The inlet mass loading of particles is Z0=10% (the corresponding �D value can
be directly obtained from following formulation: �D =�C Z/(�D+�C Z)) and the parameter of
inelasticity is ec=0.9. The results obtained using the present method were also compared with the
computational results obtained by an Euler/Lagrange scheme [31]. In the study of Kohnen, 25 000
particles have been traced through the solution domain within one coupling iteration. Fifteen such
iterations were necessary to obtain the converged solution.

5.1. Particle-laden, fully developed channel flow

Figures 4 and 5 show the comparison between experimental and numerical results for the streamwise
mean velocity and the streamwise and normal-to-the-wall turbulence intensities for both phases.

x

y

z

Flow

g

5200 mm

h=40 mm

Figure 3. Schematic of the channel flow considered (not to scale).
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Figure 4. Streamwise mean velocity, streamwise and normal-to-the-wall turbulence intensities of the
continuous phase in the fully developed, particle-laden channel flow (w.o.p.—without particles).

For the gaseous phase both sets of results are shown, the results obtained by computing the pure
gas flow (unladen flow) and the results of the particle-laden flow. Very good agreement with
the experiment is obtained for the streamwise mean velocity component of the gaseous phase,
revealing no influence of the particle motion on the gas flow. As expected, the linear eddy viscosity
formulation simulating turbulence results in a fully isotropic solution, whereas the experimental
results display considerable anisotropy (note different scales for turbulence intensities). The peak
level of the streamwise turbulence intensity close to the wall observed in the experiment was
not reached in the computation. This discrepancy arises because the equilibrium wall boundary
conditions based on the wall function concept were used for modelling the near-wall region. The
basic influence of the particles on the gaseous phase is in the attenuation of its turbulence level, as
clearly illustrated by the experimental results. This attenuation becomes stronger with increasing
wall distance and is more pronounced in the normal-to-the-wall turbulence intensity. This feature
is beyond the reach of any eddy viscosity models, either the present model or the Euler/Lagrange
method.

The simulated particle velocity (Figure 5) is substantially overpredicted, indicating stronger
acceleration of the dispersed phase compared with the experimental observation. Its profile is
almost uniform over the entire channel cross-section. The shape of the velocity profile obtained
by the Euler/Lagrange method is somewhat closer to the experimental one; however, it is almost
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Figure 5. Streamwise mean velocity, streamwise and normal-to-the-wall turbulence intensities of the
dispersed phase in the fully developed, particle-laden channel flow.
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Figure 6. Schematic of the backward-facing step configuration (not to scale).

coincident with the gas velocity profile (see Figure 4 (left)). It seems that in the experiment the
particles are slowed down by the gas phase across the entire channel cross-section. Both compu-
tational approaches show no capability in reproducing this feature. However, an opposite effect
was observed in the experiment of the channel flow behind the step in all characteristic flow zones
(compare Figures 7(a) and (b)). The normal-to-the-wall turbulence intensity is strongly underpre-
dicted by the Euler/Lagrange method. Apart from the wall vicinity, reasonable agreement with
the experiment was obtained by the present Euler/Euler method, exhibiting only a slight overpre-
diction. The same level was obtained for the streamwise intensity, reflecting again the isotropic
solution for the particle phase turbulence. This level is much lower than the experimental results.
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Figure 7. Streamwise velocity component evolution in the particle-laden, backward-facing step
flow obtained by both the Euler/Euler and Euler/Lagrange methods: (a) continuous phase (C ;

gas) and (b) disperse (D; particle) phase.

Issa and Oliveira [41] proposed a kind of ‘deferred’ correction of the computationally obtained
turbulence intensities of the dispersed phase in the framework of their algebraic model. We extended
their idea to the differential model used here and applied this procedure to the streamwise turbulence
intensity component. The corrected value represents a sum of the gas-phase turbulence intensity
and the particle turbulence intensity multiplied by a function of the Stokes number:

uD
rms=

(
2

3
kDcorr.

)1/2

=
(
2

3
kC
)1/2

+
(
2

3
kD
)1/2

exp

⎛
⎝−

C1/2
�

St

⎞
⎠

with St= �p
TE

, TE= TL
0.356

and TL=0.41
kC

εC
(101)

where TE and TL denote the Eulerian time scale and the Lagrangian integral time scale, respectively.
By increasing the value of the Stokes number (Stokes number values considered here are between 2
and 23), this modification causes an increase in streamwise turbulence level, which agrees well with
the experimental observations. The magnitude of the streamwise root-mean-square value corrected
in such a way agrees much better with the experimental data for the channel flow considered.

5.2. Particle-laden flow over a backward-facing step

Figure 7 displays streamwise mean velocities of both carrier gas-phase and copper particles at
several locations within the recirculation zone, reattaching (experimentally obtained reattaching
length is xR/H ≈7.5) and recovery region. In Figure 7(a) only the results of the unladen flow are
depicted. The results of the prediction of the laden flow show no noticeable difference.

In general, the velocity profiles predicted by both methods agree rather well with the experimental
results. By focussing the wall region within the separation zone and reattachment, the deviations
typical for eddy viscosity model application are observed. The secondary recirculation zone in the
corner immediately behind the step was not predicted numerically due to well-known weaknesses
pertinent to a eddy viscosity model scheme. This is due, on the one hand, to poor prediction
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of the normal stress components that are ultimately responsible for secondary flows and, on the
other hand, to the use of wall functions that do not capture proper near-wall flow behavior in
the recirculation zone. It results finally in a shorter main recirculation zone. In spite of these
circumstances, the velocity profiles in the recovery region (x/H =9 and 12) agree surprisingly well
with the experiment. Similar to the channel flow, the particle velocities (Figure 7(b)) exhibit an
almost uniform behavior across the flow, with a maximum value agreeing well with experimental
data. However, the profile shapes deviate substantially, indicating a nearly homogeneous particle
velocity field. This departure could be caused by the manner of defining the turbulent diffusion
coefficients of dispersed phase in the k−ε modelling concept, featuring also the turbulence kinetic
energy generation. If the value of the diffusion coefficient is too low, the turbulent character of
particle diffusion cannot be preserved. If the value is too high, the particle velocity field becomes
nearly homogenous. On the other hand, this outcome is closely connected to the vanishing mass
load Z (denoting consequently the zero value of the volume fraction �D), the recirculation regions
are usually characterized by (see Figure 8 and corresponding discussion). Oliveira and Issa [2]
addressed such a situation in their study proposing a remedy (not applied at present) based on an
appropriate division of the equations governing the two-phase flow by the corresponding volume
fraction. The evolution of the mass loading profiles along the channel behind the step is compared
only with the Euler/Lagrange calculation (Figure 8), indicating fairly good agreement. Immediately
behind the step no particles exist in the Euler/Euler predictions, agreeing well with experimental
observation (not shown here), in spite of the non-zero velocity field behind the step (Figure 7(a)).
The velocity field represents the solution of the transport equations (25) and not of the equations
describing particle motion, as in the case of the Euler/Lagrange method, in which the velocities
are only obtained if particles are present. The profiles of particle concentration further downstream
indicate the spreading of the dispersed phase in the cross direction due to the particle diffusion
mechanism.

The flow over a backward-facing step is affected by an adverse pressure gradient due to the
sudden channel expansion. It is well known that flow deceleration imposed in such a manner
promotes isotropy, thus conforming closer to the k−ε modelling concept. Furthermore, the velocity
gradient tensor exhibits more non-zero terms in this flow configuration (in the channel flow only

0

0.5

1

1.5

2

2.5

0.0 0.0 0.0 0.0 0.025 0.05 0.075 0.1 0.125

2.0 5.0 7.0 9.0

y/
H

Z

x/H

Eul./Lag.
Eul./Eul.

Figure 8. Profiles of mass loading at selected downstream locations in the
particle-laden, backward-facing step flow.
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Figure 9. Streamwise turbulence intensity of the continuous phase at selected downstream locations in
the particle-laden, backward-facing step flow.

mean shear exists). These circumstances contributed strongly to a generally acceptable agreement
of the streamwise turbulence intensities of the gaseous phase (Figure 10). Contrary to the channel
flow, no attenuation of the turbulence intensity of the gas phase was observed along the entire
domain behind the step. The streamwise turbulence intensities of the dispersed phase (Figure 9)
were again much lower then the measured ones. The agreement was significantly improved after
their correction by the ansatz introduced in Equation (101).

The following concluding remarks can be drawn with respect to the potential of the present four
equation, eddy-viscosity-based Euler/Euler model in computing the two particle-laden channel
flow configurations without and with sudden expansion. The modification of the mean gas-flow
field due to particle motion was very low in both flow configurations; the fact being very well
reproduced by the model adopted. The magnitude of the particle velocity in the core region of the
flows is predicted reasonably well, but not the low value observed experimentally in the region
towards solid walls. The isotropic assumption of the turbulence model cannot cope with turbulence
anisotropy. The introduction of the correction method of the streamwise particle velocity deviation
improves this behavior significantly in the zones of high shear. The experimentally observed
attenuation of the turbulence intensity of the gaseous phase in the fully developed channel flow
was not correctly predicted. This requires further analysis.
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Figure 10. Streamwise turbulence intensity of the disperse phase at selected downstream locations in the
particle-laden, backward-facing step flow.

6. EVAPORATION IN A TURBULENT GAS–LIQUID CHANNEL FLOW:
COMPUTATIONAL RESULTS AND DISCUSSION

The flow configuration simulated, a turbulent, gas/liquid channel flow, is displayed in Figure 3
(only upper half of the duct, being discretized by ca. 66 000 grid cells, is considered). Similar to
the particle-laden cases, a three-dimensional solution domain was adopted. The results obtained by
the Euler/Euler computational model presented in Sections 2 and 3 were compared with the results
obtained by an Euler/Lagrange method solving the transport equations of the carrier phase (Euler
framework) and individual tracking of the droplet parcels (14 800 trajectories were introduced
into the flow field displayed in Figure 11) (Figures 11–15). The Euler/Lagrange simulations were
performed by using the commercial CFD software package AVL SWIFT (AVL List GmbH, Graz).
The code employs the finite volume discretization method, which rests on the integral form of
the general conservation law applied to the polyhedral control volumes. All dependent variables
are stored at the geometric center of the control volume. The appropriate data structure (cell-face-
based connectivity) and interpolation practices for gradients and cell-face values are introduced to
accommodate an arbitrary number of cell faces. The convection can be approximated by a variety
of differencing schemes. The diffusion is approximated using central differencing. The overall

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:873–906
DOI: 10.1002/fld



COMPUTATIONAL STUDY OF EVAPORATION IN A TURBULENT GAS–LIQUID FLOW 901

X

Y

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.6 8 8.4 8.8 9.2 9.6 10 10.4
0

0.005

0.01

0.015

0.02
0.5000 0.5357 0.5714 0.6071 0.6429 0.6786 0.7143 0.7500 0.7857 0.8214 0.8571 0.8929 0.9286 0.9643 1.0000

Figure 11. Isosurfaces of the relative humidity obtained by the present Euler/Euler scheme.

solution procedure is iterative and is based on the SIMPLE-like segregated algorithm, which ensures
coupling between the velocity and pressure fields. The Euler/Lagrange method used here involves
several submodels accounting for turbulence dispersion (influence of the gas-phase turbulence on
the particulate phase by introducing the eddy life time), droplet coalescence/collision, secondary
break-up, wall interaction and finally evaporation. The flow field is modelled by the RANS method
coupled with the eddy viscosity model equations. The wall closest numerical nodes were situated
at y+�28.

The boundary conditions of the flow configurations considered (channel dimensions, bulk
Reynolds number, turbulence intensities, etc.) correspond to the geometry used for the experi-
mental investigation of the particle-laden flow by Kulick et al. [29]. Instead of solid particles,
the flow was laden with droplets characterized by their uniform distribution along the entire inlet
cross-section. This flow configuration (no experimental data for the evaporation process exist)
with the mass loading of the liquid phase being set to Z =1% is simulated, corresponding to a
dilute liquid/gas two-phase flow. As already noted, the present evaporation model was assessed
by contrasting the Euler/Euler results to the results of the Euler/Lagrange method exclusively.
Admittedly, the comparison with an appropriate experimental database would be more appropriate.
However, the experimental investigations of droplet evaporation are very rare. The most widely
used experimental study for the model validation is the one by Qiu and Sommerfeld (we discussed
this experiment and the complementary Euler/Lagrange computations in the introductory section,
[23]). Unfortunately, this experimental study does not provide details about the temperature and
relative humidity fields, Nusselt number distribution, evaporation time scale, etc. that one should
have to thoroughly validate the present model. Furthermore, this experiment was designed following
closely the Euler/Lagrange approach especially with respect to the disperse phase inflow data and
droplet parcels tracking procedure. To avoid any ambiguity in regard to the definition of the inlet
data for the Euler/Euler method (traditionally, the so-called settling length occurs, along which the
model equations adjust to the prescribed experimentally inlet results) we preferred the numerically
determined, fully developed inflow conditions generated by using the same Euler/Euler method
being applied for the evaporation computations. Accordingly, we accomplished the results valida-
tion by comparing them with the results obtained by employing the same Euler/Lagrange method
as it was used in the study of Sommerfeld et al. [23]. Keeping in mind the well-known performance
of the aforementioned Euler/Lagrange scheme, we believe that the predictive capabilities of the
present evaporation model can also be plausibly assessed in the framework of a pure computational
analysis.

Figures 11–15 show some selected results obtained by both approaches. In order to provide
the fully developed flow and turbulence conditions, a completely saturated gas phase (relative
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Figure 12. Comparison of the gas temperature fields obtained by the present Euler/Euler scheme (upper)
and the Euler/Lagrange method (lower).
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Figure 13. Comparison of the relative humidities obtained by the present Euler/Euler scheme (upper) and
the Euler/Lagrange method (lower).

humidity was taken to be 100%, large dark area in Figure 11) was computed over the duct
length of 260h=5.2m (h-channel half-width), prior to the onset of the evaporation process. The
liquid phase evaporation was introduced by heating the duct walls (in such a manner the temperature
derivative§ corresponding to the difference between 353K prescribed at the inlet cross-section—
x=0—and the constant wall temperature of 368K was imposed, Figure 12) causing a decrease in

§The temperature range (T<100◦C) was chosen to prevent complete evaporation. The study focussed primarily on
the evaporation process due to concentration gradient. The temperature range prescribed corresponds to the high
saturation pressure derivative dpsat/dT (i.e. dYsat/dT ).
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Figure 14. Isolines of (a) Reynolds number Rerel , (b) mass transfer coefficients BM and (c) time scale
of evaporation �� across the duct at two selected longitudinal locations x/h=20 (left) and 140 (right)

obtained by the present Euler/Euler scheme.
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Figure 15. Droplet diameter (upper) and volume fraction �D (lower) isolines obtained
by the present Euler/Euler scheme.

the relative humidity (Figure 13). A somewhat slower penetration of the heat flux into the flow core
(Figure 12, lower), obtained by the Euler/Lagrange method in conjunction with original evaporation
model of Abramzon and Sirignano [22] implemented in the AVL SWIFT commercial flow solver,
causes weaker temperature gradients in this region, leading to a less intensive evaporation process,
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Figure 16. Modified Nusselt number at two selected locations: x/h=20 and 90.

a fact represented by a slightly higher vapor concentration (weaker decrease from the initial 100%,
Figure 13 lower). Figure 14(a) shows the isolines of the relative Reynolds number (important
for the determination of the drag force relaxation time scale �p in the volume fraction weighted
momentum equation for the continuous phase) based on the velocity difference |uC −uD| and
droplet diameter Dp in the right top quarter of the duct cross-section at two selected longitudinal
locations. The results confirm the general reduction of the Reynolds number due to the droplet
evaporation (diameter reduction and consequently the volume fraction �D reduction, Figure 15).
This tendency is particularly pronounced in the near-wall flow regions. Figure 14(b) displays
the evolution of the mass transfer coefficients BM in the Abramzon and Sirignano evaporation
model. This coefficient, representing indeed a measure of the vapor fraction being absorbed by
the surrounding gas phase, increases due to warm up of the gas phase. The ratio of the droplet
surface to the droplet volume increases by the droplet diameter reduction. Owing to the temperature
raise, resulting in the intensification of the evaporating process, the time scale of the evaporation
decreases (Figure 14(c)). Figure 16 illustrates the influence of the evaporation (non-evaporating
liquid phase was also computationally simulated) and droplet diameter (two different Dp-values
were analyzed: 50 and 100 �m) on the Nusselt number redistribution across the channel. Although
no significant changes in the Nusselt number behavior in the case without evaporation (symbols)
are noticed, the modified Nusselt number exhibits a decrease in the region with the dominating
influence of the small droplets (near wall) if the evaporation is accounted for (lines). In contrast, the
increasing effect of the modification (in terms of the Reynolds number, Figure 11(a)) is pronounced
in the flow core.

7. CONCLUSIONS

The potential of a four-equation model of turbulence, based on the eddy viscosity concept for
the two-phase flow simulation in the framework of the Euler/Euler approach, is investigated by
computing particle-laden flow in a plane and suddenly expanded channel configurations and evap-
oration in a turbulent gas–liquid flow in a three-dimensional duct. The overall agreement between
results of the present Euler/Euler method with available experimental data and the Euler/Lagrange
simulations performed in parallel is satisfactory.
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The distribution of the volumetric fraction of the dispersed phase obtained by solving an appro-
priate model equation indicated a local decrease within the separation bubble in the particle-laden,
backward-facing step flow, agreeing well with the Euler/Lagrange simulation results. The particle
velocity variance, modelled in line with the turbulence structure of a single-phase flow, features the
coefficient of the particle diffusion model. The results concerning the mass loading of the dispersed
phase obtained in the regions with strain rates of increased complexity, as e.g. in recirculating
regions and separated shear layers, compare well with the outcome of the Euler/Lagrange scheme.

The simulation of the liquid mass decrease in an evaporating gas/liquid flow is based on a
vaporization-rate-dependent behavior of the droplet size distribution function. A transport equation
for a newly defined variable, called phase-interface surface fraction, quantifying the droplet surface
size change was introduced and tested in conjunction with Abramzon and Sirignano’s evaporation
model. The decreasing rate of liquid mass and drop cloud surface is modelled based on the
d2−law. The prediction of wall-temperature-dependent decrease in relative humidity near the wall
and the induced vaporization rate give results similar to those obtained in the Euler/Lagrangian
simulation of the vaporization process.
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